Identification of Faults in HVDC System using Wavelet Analysis

Satya Narayana, Bonigala Ramesh, Saheb Hussain


The identification and classification of faults is important for safe and optimal operation of power systems. For secure operation of a system a feasible approach is to monitor signals so that accurate and rapid classification of fault is possible for making correct protection control.To identify HVDC faults by using pure frequency or pure time domain based method is difficult. The pure frequency domain based methods are not suitable for time varying transients and the pure time domain based methods are very easily influenced by noise.Wavelet analysis is one of the methods used for providing discriminative features with small dimensions to classify different disturbances in HVDC transmission system. This paper explores the application of wavelet based Multi-Resolution Analysis (MRA) for signal decomposition to monitor some faults in HVDC system. The faults in HVDC system can be classified by monitoring the signals both on AC and DC sides of the HVDC system. The fault classifier can be developed from these monitored signals which show promising features to classify different disturbances in the HVDC system.


Full Text:


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578