A novel wind power prediction model using graph attention networks and bi-directional deep learning long and short term memory
Abstract
Today, integrating wind energy forecasting is an important area of research due to the erratic nature of wind. To achieve this goal, we propose a new model of wind speed prediction based on graph attention networks (GAT), we added a new attention mechanism and a learnable adjacency matrix to the GAT structure to obtain attention scores for each weather variable. The results of the GAT-based model are merged with the bi-directional deep learning long and short-term memory (BiLSTM) layer to take advantage of the geographic and temporal properties of historical weather data. The experiments and analyzes are carried out using precise meteorological data collected from wind farms in the Moroccan city of Tetouan. We show that the proposed model can learn complex input-output correlations of meteorological data more efficiently than previous wind speed prediction algorithms. Due to the resulting attention weights, the model also provides more information about the main weather factors for the evaluated forecast work.
Keywords
Bidirectional deep learning long-short term memory; graph attention network; prediction; renewable energy; wind power
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v13i6.pp6847-6854
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).