Automatic food bio-hazard detection system

Robinson Jimenez Moreno, Javier Eduardo Martinez Baquero


This paper presents the design of a convolutional neural network architecture oriented to the detection of food waste, to generate a low, medium, or critical-level alarm. An architecture based on four convolution layers is used, for which a database of 100 samples is prepared. The database is used with the different hyperparameters that make up the final architecture, after the training process. By means of confusion matrix analysis, a 100% performance of the network is obtained, which delivers its output to a fuzzy system that, depending on the duration of the detection time, generates the different alarm levels associated with the risk.


convolutional network; deep learning; food detection; fuzzy interference;

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).