Prediction model of algal blooms using logistic regression and confusion matrix

Hongwon Yun

Abstract


Algal blooms data are collected and refined as experimental data for algal blooms prediction. Refined algal blooms dataset is analyzed by logistic regression analysis, and statistical tests and regularization are performed to find the marine environmental factors affecting algal blooms. The predicted value of algal bloom is obtained through logistic regression analysis using marine environment factors affecting algal blooms. The actual values and the predicted values of algal blooms dataset are applied to the confusion matrix. By improving the decision boundary of the existing logistic regression, and accuracy, sensitivity and precision for algal blooms prediction are improved. In this paper, the algal blooms prediction model is established by the ensemble method using logistic regression and confusion matrix. Algal blooms prediction is improved, and this is verified through big data analysis.

Keywords


algal blooms; confusion matrix; ensemble method; logistic regression; prediction model;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v11i3.pp2407-2413

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).