Predicting stock price movement using effective Thai financial probabilistic lexicon
Abstract
Predicting stock price fluctuation during critical events remains a big challenge for many researchers because the stock market is extremely vulnerable and sensitive during such time. Most existing works rely on various numerical data of related factors which can impact the stock price direction. However, very few research papers analyzed the effect of information appearing in financial news articles. In this paper, a novel probabilistic lexicon based stock market prediction (PLSP) algorithm is proposed to predict the direction of stock price movement. Our approach used the proposed thai financial probabilistic lexicon (ThaiFinLex) derived from Thai financial news and stock market historical prices. The PLSP development consists of three steps. Firstly, we constructed ThaiFinLex by extracting event terms from news articles and calculating their associated probability of increasing/decreasing values of stock prices. Then, event terms with bad prediction performance were filtered out. Finally, the stock price directions were predicted using the PLSP and the remaining effective event terms. Our results indicated that the proposed model can be used for predicting stock price movement. The performance is as high as 83.33% when PLSP is used to predict stocks from the financial sector.
Keywords
event term; probabilistic lexicon; stock price prediction; Thai financial news articles; Thaifinlex;
Full Text:
XMLDOI: http://doi.org/10.11591/ijece.v11i5.pp4313-4324
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).