Framework for progressive segmentation of chest radiograph for efficient diagnosis of inert regions

Savitha S. K., N. C. Naveen

Abstract


Segmentation is one of the most essential steps required to identify the inert object in the chest x-ray. A review with the existing segmentation techniques towards chest x-ray as well as other vital organs was performed. The main objective was to find whether existing system offers accuracy at the cost of recursive and complex operations. The proposed system contributes to introduce a framework that can offer a good balance between computational performance and segmentation performance. Given an input of chest x-ray, the system offers progressive search for similar image on the basis of similarity score with queried image. Region-based shape descriptor is applied for extracting the feature exclusively for identifying the lung region from the thoracic region followed by contour adjustment. The final segmentation outcome shows accurate identification followed by segmentation of apical and costophrenic region of lung. Comparative analysis proved that proposed system offers better segmentation performance in contrast to existing system.

Keywords


chest x-ray; chest radiograph; segmentation; disease detection; lung

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v9i2.pp982-991

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).