Accelerating Compression Time of the standard JPEG by Employing The Quantized YCbCr Color Space Algorithm

Trini Saptariani, Sarifudin Madenda, Ernastuti Ernastuti, Widya Silfianti

Abstract


In this paper, we propose a quantized YCbCr color space (QYCbCr) technique which is employed in standard JPEG. The objective of this work is to accelerate computational time of the standard JPEG image compression algorithm. This is a development of the standard JPEG which is named QYCBCr algorithm. It merges two processes i.e., YCbCr color space conversion and Q quantization in which in the standar JPEG they were performed separately. The merger forms a new single integrated process of color conversion which is employed prior to DCT process by subsequently eliminating the quantization process. The equation formula of QYCbCr color coversion is built based on the chrominance and luminance properties of the human visual system which derived from quatization matrices. Experiment results performed on images of different sizes show that the computational running time of QYCbCr algorithm gives 4 up to 8 times faster than JPEG standard, and also provides higher compression ratio and better image quality.

Keywords


chrominace, compression, DCT, JPEG, luminance, quantization matrix, QYCbCr.

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v8i6.pp4343-4351

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).