A Novel Technique for Tuning PI -controller In Switched Reluctance Motor Drive for Transportation Systems
Abstract
This paper presents, an optimal basic speed controller for switched reluctance motor (SRM) based on ant colony optimization (ACO) with the presence of good accuracies and performances. The control mechanism consists of proportional-integral (PI) speed controller in the outer loop and hysteresis current controller in the inner loop for the three phases, 6/4 switched reluctance motor. Because of nonlinear characteristics of a SRM, ACO algorithm is employed to tune coefficients of PI speed controller by minimizing the time domain objective function. Simulations of ACO based control of SRM are carried out using MATLAB /SIMULINK software. The behavior of the proposed ACO has been estimated with the classical Ziegler- Nichols (ZN) method in order to prove the proposed approach is able to improve the parameters of PI chosen by ZN method. Simulations results confirm the better behavior of the optimized PI controller based on ACO compared with optimized PI controller based on classical Ziegler-Nichols method.
Keywords
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v8i6.pp4272-4281
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).