A Novel Method based on Gaussianity and Sparsity for Signal Separation Algorithms
Abstract
Blind source separation is a very known problem which refers to finding the original sources without the aid of information about the nature of the sources and the mixing process, to solve this kind of problem having only the mixtures, it is almost impossible , that why using some assumptions is needed in somehow according to the differents situations existing in the real world, for exemple, in laboratory condition, most of tested algorithms works very fine and having good performence because the nature and the number of the input signals are almost known apriori and then the mixing process is well determined for the separation operation. But in fact, the real-life scenario is much more different and of course the problem is becoming much more complicated due to the the fact of having the most of the parameters of the linear equation are unknown. In this paper, we present a novel method based on Gaussianity and Sparsity for signal separation algorithms where independent component analysis will be used. The Sparsity as a preprocessing step, then, as a final step, the Gaussianity based source separation block has been used to estimate the original sources. To validate our proposed method, the FPICA algorithm based on BSS technique has been used.
Keywords
gaussianity, independent component analy-sis (ICA), signal separation algorithms, sparse independent analysis sparsity,
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v7i4.pp1906-1914
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).