Design of a Selective Filter based on 2D Photonic Crystals Materials

Lallam Farah, Badaoui Hadjira, Abri Mehadji

Abstract


Two dimensional finite differences temporal domain (2D-FDTD) numerical simulations are performed in cartesian coordinate system to determine the dispersion diagrams of transverse electric (TE) of a two-dimension photonic crystal (PC) with triangular lattice. The aim of this work is to design a filter with maximum spectral response close to the frequency 1.55 μm. To achieve this frequency, selective filters PC are formed by combination of three waveguides W1K A wherein the air holes have of different normalized radii respectively r1/a=0.44, r2/a=0.288 and r3/a= 0.3292 (a: is the periodicity of the lattice with value 0.48 μm). Best response is obtained when we insert three small cylindrical cavities (with normalized radius of 0.17) between the two half-planes of photonic crystal strong lateral confinement.

Keywords


2D photonic crystals, 2D-FDTD, band filters, waveguide

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v7i4.pp1833-1838

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).