Dynamic Modelling of Aerobic Granular Sludge Artificial Neural Networks

Nurazizah Mahmod, Norhaliza Abdul Wahab

Abstract


Aerobic Granular Sludge (AGS) technology is a promising development in the field of aerobic wastewater treatment system. Aerobic granulation usually happened in sequencing batch reactors (SBRs) system. Most available models for the system are structurally complex with the nonlinearity and uncertainty of the system makes it hard to predict. A reliable model of AGS is essential in order to provide a tool for predicting its performance. This paper proposes a dynamic neural network approach to predict the dynamic behavior of aerobic granular sludge SBRs. The developed model will be applied to predict the performance of AGS in terms of the removal of Chemical Oxygen Demand (COD). The simulation uses the experimental data obtained from the sequencing batch reactor under three different conditions of temperature (30˚C, 40˚C and 50˚C). The overall results indicated that the dynamic of aerobic granular sludge SBR can be successfully estimated using dynamic neural network model, particularly at high temperature.

Keywords


aerobic granular sludge, dynamic, feedforward, neural network, sequencing batch reactor

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v7i3.pp1568-1573

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).