New Decimation-In-Time Fast Hartley Transform Algorithm
Abstract
This paper presents a new algorithm for fast calculation of the discrete Hartley transform (DHT) based on decimation-in-time (DIT) approach. The proposed radix-2^2 fast Hartley transform (FHT) DIT algorithm has a regular butterfly structure that provides flexibility of different powers-of-two transform lengths, substantially reducing the arithmetic complexity with simple bit reversing for ordering the output sequence. The algorithm is developed through the three-dimensional linear index map and by integrating two stages of the signal flow graph together into a single butterfly. The algorithm is implemented and its computational complexity has been analysed and compared with the existing FHT algorithms, showing that it is significantly reduce the structural complexity with a better indexing scheme that is suitable for efficient implementation.
Keywords
fast transform algorithms; signals and systems
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v6i4.pp1654-1661
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).