An Optimal HSI Image Compression using DWT and CP
Abstract
The compression of hyperspectral images (HSIs) has recently become a very attractive issue for remote sensing applications because of their volumetric data. An efficient method for hyperspectral image compression is presented. The proposed algorithm, based on Discrete Wavelet Transform and CANDECOM/PARAFAC (DWT-CP), exploits both the spectral and the spatial information in the images. The core idea behind our proposed technique is to apply CP on the DWT coefficients of spectral bands of HSIs. We use DWT to effectively separate HSIs into different sub-images and CP to efficiently compact the energy of sub-images. We evaluate the effect of the proposed method on real HSIs and also compare the results with the well-known compression methods. The obtained results show a better performance when comparing with the existing method PCA with JPEG 2000 and 3D SPECK.
DOI:http://dx.doi.org/10.11591/ijece.v4i3.6326
Full Text:
PDF
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).