Machine Learning Techniques on Multidimensional Curve Fitting Data Based on R- Square and Chi-Square Methods

Vidyullatha P, D. Rajeswara Rao

Abstract


Curve fitting is one of the procedures in data analysis and is helpful for prediction analysis showing graphically how the data points are related to one another whether it is in linear or non-linear model. Usually, the curve fit will find the concentrates along the curve or it will just use to smooth the data and upgrade the presence of the plot. Curve fitting checks the relationship between independent variables and dependent variables with the objective of characterizing a good fit model. Curve fitting finds mathematical equation that best fits given information. In this paper, 150 unorganized data points of environmental variables are used to develop Linear and non-linear data modelling which are evaluated by utilizing 3 dimensional ‘Sftool’ and ‘Labfit’ machine learning techniques. In Linear model, the best estimations of the coefficients are realized by the estimation of R- square turns in to one and in Non-Linear models with least Chi-square are the criteria. 


Keywords


curve fit; Chi-square; interpolantlinear; Labfit; surface fitting tool

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v6i3.pp974-979

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).