Detecting lung nodules in computed tomography images based on deep learning
Abstract
Lung cancer is currently recognized as one of the most dangerous cancers, with high mortality rate. In order to deal with lung cancer, an important task is to detect lung nodules early to improve patient survival rates, and computed tomography (CT) scans are crucial data for this. In this research, we propose a deep learning-based method for detecting lung nodules in the CT images with the goal of increasing the likelihood of nodule appearance in the input data of the network, making it easier for the model to focus on relevant areas while reducing noise from areas unrelated to the result. Specifically, we propose a simple lung region segmentation process and optimize the hyperparameters of the faster region-based convolutional neural networks (faster R-CNN) model based on the analysis of nodule characteristics in CT image data. In our experiments, to evaluate the effectiveness of our proposals, we conducted tests on the standard LUNA16 dataset with different backbone configurations for the model, namely ResNet50, ResNet50v2, and MobileNet. The best results achieved were 0.86 mAP50 and 0.91 Recall for the Resnet50, and 0.84 mAP50 and 0.94 Recall for the ResNet50v2. These impressive outcomes underscore the success of our method and establish a robust basis for future studies to further integrate AI into healthcare solutions.
Keywords
CT image; Deep learning; Fine-tuned faster R-CNN; Lung nodule detection; Lung segmentation
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v15i6.pp5604-5615
Copyright (c) 2025 Lam Thanh Hien, Le Anh Tu, Pham Trung Hieu, Pham Minh Duc, Nguyen Van Nang, Do Nang Toan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by theĀ Institute of Advanced Engineering and Science (IAES).