Synthesis of nonlinear multilinked control systems of thermal power plants
Abstract
The paper addresses the synthesis of nonlinear control laws for the technological parameters of drum boiler steam generators in thermal power plants, based on a synergetic control approach. The controlled system is considered to be multidimensional and highly interconnected. The inherent nonlinearity and interdependence of the technological parameters in thermal power plants necessitate the use of nonlinear control laws to achieve effective regulation. This approach enables the expansion of the range of permissible variations in regulator parameters, thereby ensuring the desired dynamic behavior of the controlled variables. An analytical method for synthesizing nonlinear vector control laws for steam generators is proposed. A methodology is developed for designing dynamic regulators capable of compensating for uncertain disturbances while accounting for control constraints. A Lyapunov function is constructed to describe the internal state dynamics of the control object. The proposed method for constructing the dynamic regulator ensures the asymptotic stability of the control system and stabilization of the controlled parameters over a wide range of load variations.
Keywords
Control problems; Lyapunov function; Steam generator; Synergetic approach; Thermal power plant
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v15i5.pp4500-4507
Copyright (c) 2025 Oksana Porubay, Isamiddin Siddikov
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by theĀ Institute of Advanced Engineering and Science (IAES).