A hybrid DMO-CNN-LSTM framework for feature selection and diabetes prediction: a deep learning perspective
Abstract
The early and accurate prediction of diabetes mellitus remains a significant challenge in clinical decision-making due to the high dimensionality, noise, and heterogeneity of medical data. This study proposes a novel hybrid classification framework that integrates the dwarf mongoose optimization (DMO) algorithm for feature selection with a convolutional neural network–long short-term memory (CNN-LSTM) deep learning architecture for predictive modeling. The DMO algorithm is employed to intelligently select the most informative subset of features from a large-scale diabetes dataset collected from 130 U.S. hospitals over a 10-year period. These optimized features are then processed by the CNN-LSTM model, which combines spatial pattern recognition and temporal sequence learning to enhance predictive accuracy. Extensive experiments were conducted and compared against traditional machine learning models (logistic regression, random forest, XGBoost), baseline deep learning models (MLP, standalone CNN, standalone LSTM), and state-of-the-art hybrid classifiers. The proposed DMO-CNN-LSTM model achieved the highest classification performance with an accuracy of 96.1%, F1-score of 94.6%, and ROC-AUC of 0.96, significantly outperforming other models. Additional analyses, including confusion matrix, ROC curves, training convergence plots, and statistical evaluations confirm the robustness and generalizability of the approach. These findings suggest that the DMO-CNN-LSTM framework offers a powerful and interpretable tool for intelligent diabetes prediction, with strong potential for integration into real-world clinical decision-support systems.
Keywords
Clinical decision support system; CNN-LSTM; Diabetes prediction; Dwarf mongoose optimization; Feature selection; Hybrid classification model; Medical diagnosis
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v15i6.pp5555-5569
Copyright (c) 2025 Mutasem K. Alsmadi, Ghaith M. Jaradat, Tariq Alsallak, Malek Alzaqebah, Sana Jawarneh, Hayat Alfagham, Jehad Alqurni, Usama Badawi, Latifa Abdullah Almusfar

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES).