Comparative analysis of YOLOv8 techniques: OpenCV and coordinate attention weighting for distance perception in blind navigation systems
Abstract
Blindness is a very important issue to consider in research aimed at assisting vision. This condition requires further study to provide solutions for the blind. This study evaluates and compares the effectiveness of the you only look once v8 (YOLOv8) model integrated with OpenCV and the coordinate attention weighting (CAW) technique for distance estimation in a blind navigation system. Initially, YOLOv8 integrated with OpenCV produced less than optimal results, prompting further improvement efforts to surpass the performance of CAW. The goal is to enhance the accuracy and efficiency of distance perception without the need for additional sensors. The materials used include a variety of datasets annotated with distance information to train and evaluate the model. The methods employed include integrating YOLOv8 with OpenCV for baseline comparison and applying CAW to improve distance perception through enhanced feature attention. The results show that YOLOv8+OpenCV Improved achieves the lowest mean squared error (MSE) across the entire distance range: 0-1 m (0.44), 1-2 m (0.50), 2-3 m (0.58), 3-4 m (0.64), and 4-5 m (0.71). YOLOv8+CAW also outperforms YOLOv8+OpenCV original, demonstrating a notable enhancement in accuracy. The model achieves a detection accuracy of 95.7%, showcasing the effectiveness of computer vision techniques in supporting blind navigation systems, offering precise distance estimation capabilities and reducing the reliance on external sensors. The implications include improved real-time performance and accessibility for the blind, paving the way for more efficient and reliable navigation assistance technologies.
Keywords
Blind person; Computer vision; Coordinate attention weighting; OpenCV; YOLOv8
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v15i3.pp3267-3278
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by theĀ Institute of Advanced Engineering and Science (IAES).