An efficient strategy for optimizing a neuro-fuzzy controller for mobile robot navigation
Abstract
Autonomous navigation is one of the key challenges in robotics. In recent years, several research studies have tried to improve the quality of this task by adopting artificial intelligence approaches. Indeed, the neuro-fuzzy approach stands out as one of the most commonly employed methods for developing autonomous navigation systems. Nevertheless, it may encounter problems of accuracy, complexity, and interpretability due to redundancy in the fuzzy rule base, particularly in the fuzzy sets associated with the system’s variables. In this work, a strategy is proposed to optimize an adaptive-network-based fuzzy inference system (ANFIS) controller for reactive navigation by addressing the problem of complexity and accuracy. It consists in combining a suite of methods, namely, data-driven fuzzy modeling, fuzzy sets merging, fuzzy rule base simplification, and parameter training. This process has produced a fuzzy inference system-based controller with high accuracy and low complexity, enabling smooth and near-optimal navigation. This system receives local information from sensors and predicts the appropriate kinematic behavior that enables the robot to avoid obstacles and reach the target in cluttered and previously unknown environments. The performance of the proposed controller and the efficiency of the followed strategy are demonstrated
Keywords
Accuracy; Complexity; Fuzzy clustering; Mobile robot; Reactive navigation; Rule base simplification
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v15i1.pp1065-1078
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).