Bitcoin volatility forecasting: a comparative analysis of conventional econometric models with deep learning models

Nrusingha Tripathy, Debahuti Mishra, Sarbeswara Hota, Sashikala Mishra, Gobinda Chandra Das, Sasanka Sekhar Dalai, Subrat Kumar Nayak

Abstract


The behavior of the Bitcoin market is dynamic and erratic, impacted by a range of elements including news developments and investor mood. One well-known aspect of bitcoin is its extreme volatility. This study uses both conventional econometric techniques and deep learning algorithms to anticipate the volatility of Bitcoin returns. The research is based on historical Bitcoin price data spanning October 2014 to February 2022, which was obtained using the Yahoo Finance API. In this work, we contrast the efficacy of generalized autoregressive conditional heteroskedasticity (GARCH) and threshold ARCH (TARCH) models with long short-term memory (LSTM), bidirectional LSTM (Bi-LSTM), and multivariate Bi-LSTM models. Model effectiveness is evaluated by means of root mean squared error (RMSE) and root mean squared percentage error (RMSPE) scores. The multivariate Bi-LSTM model emerges as mostly effective, achieving an RMSE score of 0.0425 and an RMSPE score of 0.1106. This comparative scrutiny contributes to understanding the dynamics of Bitcoin volatility prediction, offering insights that can inform investment strategies and risk management practices in this quickly changing environment of finance.

Keywords


Bidirectional long short-term memory; Cryptocurrency; Forecasting; Generalized autoregressive conditional heteroskedasticity; Volatility

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v15i1.pp614-623

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).