Deep learning model for diagnosing polycystic ovary syndrome using a comprehensive dataset from Kerala hospitals
Abstract
Polycystic ovary syndrome (PCOS) requires early and precise diagnosis to manage and prevent long-term health consequences effectively. In this research, a large dataset of healthcare data gathered from various hospitals in Kerala, India, was evaluated using multiple machine learning (ML) and deep learning (DL) models to identify a highly reliable and accurate prediction of PCOS. The six algorithms used for comparison with the proposed DL model are support vector classification, random forest, logistic regression, k-nearest neighbors, and gaussian naive Bayes; they were selected due to their strengths in handling features in large datasets. The highly parameterized neural networks were tuned using efficient approaches like Optuna and genetic algorithms. The results indicated that the model implemented using our proposed combination of DL model and Optuna, outperformed the traditional models, achieving 93.55% reliability. This suggests the potential for using deep learning for decision-making in diagnosing PCOS. This method demonstrates the importance of integrating various data types with powerful analytic tools in medical diagnostics to support customized therapy.
Keywords
Deep learning; Disease prediction; Genetic algorithm; Healthcare; Polycystic ovarian syndrome
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v14i5.pp5715-5727
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).