Measuring anxiety level on phobia using electrodermal activity, electrocardiogram and respiratory signals
Abstract
People with spider phobia experience excessive anxiety reactions when exposed to spiders that will interfere with daily life. Diagnosing and measuring anxiety levels in patients with spider phobia is a complex challenge. Conventional diagnosis requires psychological evaluations and clinical interviews that take time and often result in a high degree of subjectivity. Therefore, there is a need for a more objective and efficient approach to measuring anxiety levels in patients. This study performs anxiety level classification based on electrodermal activity, electrocardiogram (ECG) and respiratory signals using the dataset of Arachnophobia subjects. Each raw data is preprocessed using 24 types of features. Feature performance is processed using the recursive feature elimination method. Data processing was performed in 3 anxiety levels (high, medium, low) and two anxiety levels (high, low) with the support vector machine method and hold-out validation method (7:3). The performance of the model is evaluated by showing the accuracy, precision, recall and F1 score values. The polynomial kernel can perform optimal classification and obtain 100% accuracy in 2 classes and three classes with 100% precision, recall, and F1 score values. This result shows excellent potential in measuring anxiety levels that correlate with mental health issues.
Keywords
Anxiety; Electrocardiogram; Electrodermal activity; Phobia; Respiratory signals; Support vector machine
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v15i1.pp337-348
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).