Predicting academic performance: toward a model based on machine learning and learner’s intelligences

Jamal Eddine Rafiq, Zakrani Abdelali, Mohammed Amraouy, Said Nouh, Abdellah Bennane

Abstract


With the rapid evolution of online learning environments, the ability to predict students' academic performance has become crucial for personalizing and enhancing the educational experience. In this article, we present a predictive model based on machine learning techniques, designed to be integrated into online learning platforms using the competency-based approach. This model leverages features from four key dimensions: demographic, social, emotional, and cognitive, to accurately predict learners' academic performance. We detail the methodology for collecting and processing learning traces, distinguishing between explicit traces, such as demographic data, and implicit traces, which capture learners' interactions and behaviors during their learning process. The analysis of these data not only improves the accuracy of performance predictions but also provides valuable insights into skill acquisition and learners' personal development. The results of this study demonstrate the potential of this model to transform online education by making it more adaptive and focused on individual learners' needs.

Keywords


Competency-based learning; Digital learning; Learning traces; Machine learning; Predicting academic Performance

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v15i1.pp645-653

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).