Single phase robustness variable structure load frequency controller for multi-region interconnected power systems with communication delays

Phan-Thanh Nguyen, Cong-Trang Nguyen

Abstract


This paper proposes an estimator-based single phase robustness variable structure load frequency controller (SPRVSLFC) for the multi-region interconnected power systems (MRIPS) with communication delays. The key attainments of this research consist of two missions: i) a global stability of the power systems is guaranteed by removing the reaching phase in traditional variable structure control (TVSC) technique; and ii) a novel output feedback load frequency controller is established based on the estimator tool and output information only. Initially, a single-phase switching function is constructed to disregard the reaching phase in TVSC. Then, an unmeasurable state variable of the MRIPS is estimated by using the proposed estimator tool. Next, a new SPRVSLFC for the MRIPS is suggested based on the support of the estimator tool and output data only. Furthermore, a sufficient constraint is constructed by retaining the linear matrix inequality (LMI) procedure for ensuring the robust stability of motion dynamics in sliding mode. Finally, the performance of interconnected power plant under changed multi-constraints is imitated with the novel control technique to validate the practicability of the plant.

Keywords


Communication delay; Communication delays without reaching phase; Load frequency control; Multi-region interconnected power system; Variable structure control

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v14i5.pp5064-5071

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).