A detailed analysis of deep learning-based techniques for automated radiology report generation
Abstract
The automated creation of medical reports from images of chest X-rays has the potential to significantly reduce workloads for healthcare providers and accelerate patient care, especially in environments with limited resources. This study provides an extensive overview of deep learning-based techniques designed for radiology report generation from chest X-ray pictures automatically. By examining recent research, we delve into various deep learning architectures and techniques used for this task, including transformer-based approaches, attention mechanisms, sequence-to-sequence models, adversarial training methods, and hybrid models. We also discuss about the datasets used for evaluation and training, as well as future directions and research problems in this area. The significance of deep learning in revolutionizing radiology reporting is further emphasized by our review, which also highlights the need for additional research to address challenges such data accessibility, image quality variability, interpretation of complex findings, and contextual integration. The objective of this research is to present a comparative analysis of cutting-edge methods for developing automated medical report generation to enhance patient outcomes and healthcare delivery.
Keywords
Automatic medical report generation; Chest X-ray images; Deep learning; Healthcare; Radiology reports
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v14i5.pp5906-5915
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).