Email subjects generation with large language models: GPT-3.5, PaLM 2, and BERT

Soumaya Loukili, Abdelhadi Fennan, Lotfi Elaachak


In order to enhance marketing efforts and improve the performance of marketing campaigns, the effectiveness of language generation models needs to be evaluated. This study examines the performance of large language models (LLMs), namely GPT-3.5, PaLM 2, and bidirectional encoder representations from transformers (BERT), in generating email subjects for advertising campaigns. By comparing their results, the authors evaluate the efficacy of these models in enhancing marketing efforts. The objective is to explore how LLMs contribute to creating compelling email subject lines and improving opening rates and campaign performance, which gives us an insight into the impact of these models in digital marketing. In this paper, the authors first go over the different types of language models and the differences between them, before giving an overview of the most popular ones that will be used in the study, such as GPT-3.5, PaLM 2, and BERT. This study assesses the relevance, engagement, and uniqueness of GPT-3.5, PaLM 2, and BERT by training and fine-tuning them on marketing texts. The findings provide insights into the major positive impact of artificial intelligence (AI) on digital marketing, enabling informed decision-making for AI-driven email marketing strategies.


Artificial intelligence; Deep learning; Digital marketing; GPT; Large language models

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).