Rotor angle deviation regulator to enhance the rotor angle stability of synchronous generators

Nor Syaza Farhana Mohamad Murad, Muhammad Nizam Kamarudin, Muhammad Iqbal Zakaria

Abstract


Occurrences of disturbance affect the rotor angle operation of a synchronous generator in the generation system of a power system. The disturbance will disrupt the synchronous generator's rotor oscillation and result in rotor angle instability, which will degrade the power system's performance. This paper aims to develop a Lyapunov-based rotor angle deviation regulator for the nonlinear swing equation of a synchronous generator. The proposed regulator is expected to assure asymptotic stability of the rotor angle and robustness to uncertainty. Backstepping and Lyapunov redesign techniques are employed in developing the regulator. To validate the effectiveness and robustness of the regulator, a simulation in MATLAB/Simulink is carried out. The simulation result shows that the asymptotic stability and robustness of the regulator are guaranteed regardless of the disturbance.

Keywords


Lyapunov; Nonlinear swing equation; Power system; Rotor angle stability; Synchronous generator

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v14i5.pp4879-4887

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).