Electrical signal interference minimization using appropriate core material for 3D integrate circuit at high frequency applications

Malagonda Siva Kumar, Jayavelu Mohanraj


As demand for smaller, quicker, and more powerful devices rises, Moore's law is strictly followed. The industry has worked hard to make little devices that boost productivity. The goal is to optimize device density. Scientists are reducing connection delays to improve circuit performance. This helped them understand three-dimensional integrated circuit (3D IC) concepts, which stack active devices and create vertical connections to diminish latency and lower interconnects. Electrical involvement is a big worry with 3D integrates circuits. Researchers have developed and tested through silicon via (TSV) and substrates to decrease electrical wave involvement. This study illustrates a novel noise coupling reduction method using several electrical involvement models. A 22% drop in electrical involvement from wave-carrying to victim TSVs introduces this new paradigm and improves system performance even at higher THz frequencies.


Aggressive through silicon via; Electrical interference; Perylene-N; Three-dimensional integrate circuit; Through silicon vias

Full Text:


DOI: http://doi.org/10.11591/ijece.v14i3.pp2500-2507

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).