A deep dive into enhancing frequency stability in integrated photovoltaic power grids

Ali Abderrazak Tadjeddine, Iliace Arbaoui, Hamiani Hichem, Mohamed Nour, Mohamed Alami

Abstract


Voltage control strategies (VCS) and frequency stability analysis (FSA) are essential for power system reliability, particularly during high-load periods. Stable voltage and frequency levels prevent malfunction, power quality deterioration, and supply interruptions. Grid operators must skillfully manage VCS and FSA control to ensure system stability. Nonlinear loads, especially under transient conditions, significantly affect voltage stability (VS), introducing harmonics, waveform distortion, and stability complexities. Accurate modeling of these nonlinear loads is vital when traditional static load models fall short. Frequency fluctuations from power generation-demand imbalances require vigilant monitoring and regulation. Effective frequency control mechanisms are indispensable for preserving desired frequencies. Using a Western Algeria case study, this paper underscores FSA's significance in integrating photovoltaic (PV) systems into power grids. It addresses challenges from frequency fluctuations due to dynamic ZIP load profiles, emphasizing the importance of FSA for reliable grid operation. The study offers insights and practical approaches to enhance VS, FSA control, and energy management (EM), improving grid reliability and ensuring uninterrupted power supply. We must look into FSA's benefits in integrating PV systems to improve performance and lower grid interruptions. This includes looking into its control mechanisms and feedback systems.

Keywords


Algeria power grid; Frequency stability analysis; Load frequency control; Multi-objective optimal power flow; Photovoltaic integration; Renewable energy sources; Voltage control strategies

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v14i2.pp1203-1214

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).