Reinforcement learning strategies using Monte-Carlo to solve the blackjack problem

Raghavendra Srinivasaiah, Vinai George Biju, Santosh Kumar Jankatti, Ravikumar Hodikehosahally Channegowda, Niranjana Shravanabelagola Jinachandra


Blackjack is a classic casino game in which the player attempts to outsmart the dealer by drawing a combination of cards with face values that add up to just under or equal to 21 but are more incredible than the hand of the dealer he manages to come up with. This study considers a simplified variation of blackjack, which has a dealer and plays no active role after the first two draws. A different game regime will be modeled for everyone to ten multiples of the conventional 52-card deck. Irrespective of the number of standard decks utilized, the game is played as a randomized discrete-time process. For determining the optimum course of action in terms of policy, we teach an agent-a decision maker-to optimize across the decision space of the game, considering the procedure as a finite Markov decision chain. To choose the most effective course of action, we mainly research Monte Carlo-based reinforcement learning approaches and compare them with q-learning, dynamic programming, and temporal difference. The performance of the distinct model-free policy iteration techniques is presented in this study, framing the game as a reinforcement learning problem.


Blackjack; Dynamic programming; Monte Carlo; q-learning; Reinforcement learning; Temporal difference;

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).