Autonomous open-source electric wheelchair platform with internet-of-things and proportional-integral-derivative control

Dechrit Maneetham, Padma Nyoman Crisnapati, Yamin Thwe

Abstract


This study aims to improve the working model of autonomous wheelchair navigation for disabled patients using the internet of things (IoT). A proportional-integral-derivative (PID) control algorithm is applied to the autonomous wheelchair to control movement based on position coordinates and orientation provided by the global positioning system (GPS) and digital compass sensor. This system is controlled through the IoT system, which can be operated from a web browser. Autonomous wheelchairs are handled using a waypoint algorithm; ESP8266 is used as a microcontroller unit that acts as a bridge for transmitting data obtained by sensors and controlling the direct current (DC) motors as actuators. The proposed system and the autonomous wheelchair performance gave satisfactory results with a longitude and latitude error of 1.1 meters to 4.5 meters. This error is obtained because of the limitations of GPS with the type of Ublox Neo-M8N. As a starting point for further research, a mathematical model of a wheelchair was created, and pure pursuit control algorithm was used to simulate the movement. An open-source autonomous IoT platform for electric wheelchairs has been successfully created; this platform can help nurses and caretakers.

Keywords


Electric powered wheelchair; internet of things; motion control; proportional integral derivative; pure pursuit; unmanned ground wheelchair

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v13i6.pp6764-6777

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).