Predicting automobile insurance fraud using classical and machine learning models
Abstract
Insurance fraud claims have become a major problem in the insurance industry. Several investigations have been carried out to eliminate negative impacts on the insurance industry as this immoral act has caused the loss of billions of dollars. In this paper, a comparative study was carried out to assess the performance of various classification models, namely logistic regression, neural network (NN), support vector machine (SVM), tree augmented naïve Bayes (NB), decision tree (DT), random forest (RF) and AdaBoost with different model settings for predicting automobile insurance fraud claims. Results reveal that the tree augmented NB outperformed other models based on several performance metrics with accuracy (79.35%), sensitivity (44.70%), misclassification rate (20.65%), area under curve (0.81) and Gini (0.62). In addition, the result shows that the AdaBoost algorithm can improve the classification performance of the decision tree. These findings are useful for insurance professionals to identify potential insurance fraud claim cases.
Keywords
AdaBoost; Data science; Fraud detection; Insurance fraud; Machine learning; Tree augmented naïve Bayes;
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v14i1.pp911-921
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).