Best sum-throughput evaluation of cooperative downlink transmission nonorthogonal multiple access system

Ahmad Albdairat, Fayez Wanis Zaki, Mohammed Mahmoud Ashour


In cooperative simultaneous wireless information and power transfer (SWIPT) nonorthogonal multiple access (NOMA) downlink situations, the current research investigates the total throughput of users in center and edge of cell. We focus on creating ways to solve these problems because the fair transmission rate of users located in cell edge and outage performance are significant hurdles at NOMA schemes. To enhance the functionality of cell-edge users, we examine a two-user NOMA scheme whereby the cell-center user functions as a SWIPT relay using power splitting (PS) with a multiple-input single-output. We calculated the probability of an outage for both center and edge cell users, using closed-form approximation formulas and evaluate the system efficacy. The usability of cell edge users is maximized by downlink transmission NOMA (CDT-NOMA) employing a SWIPT relay that employs PS. The suggested approach calculates the ideal value of the PS coefficient to optimize the sum throughput. Compared to the noncooperative and single-input single-output NOMA systems, the best SWIPT-NOMA system provides the cell-edge user with a significant throughput gain. Applying SWIPT-based relaying transmission has no impact on the framework’s overall throughput.


Cell-edge users; Decoding; Nonorthogonal multiple access system; Probability; Sum-throughput analysis; Wireless communication

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).