A brief study on rice diseases recognition and image classification: fusion deep belief network and S-particle swarm optimization algorithm

Miryabbelli Jayaram, Gudikandhula Kalpana, Subba Reddy Borra, Battu Durga Bhavani

Abstract


In the regions of southern Andhra Pradesh, rice brown spot, rice blast, and rice sheath blight have emerged as the most prevalent diseases. The goal of this research is to increase the precision and effectiveness of disease diagnosis by proposing a framework for the automated recognition and classification of rice diseases. Therefore, this work proposes a hybrid approach with multiple stages. Initially, the region of interest (ROI) is extracted from the dataset and test images. Then, the multiple features are extracted, such as color-moment-based features, grey-level cooccurrence matrix (GLCM)-based texture, and shape features. Then, the S-particle swarm optimization (SPSO) model selects the best features from the extracted features. Moreover, the deep belief network (DBN) model trained by SPSO is based on optimal features, which classify the different types of rice diseases. The SPSO algorithm also optimized the losses generated in the DBN model. The suggested model achieves a hit rate of 94.85% and an accuracy of 97.48% with the 10-fold cross-validation approach. The traditional machine learning (ML) model is significantly less accurate than the area under the receiver operating characteristic curve (AUC), which has an accuracy of 97.48%.

Keywords


Deep belief networks; image classification; image recognition; rice diseases; s-particle swam optimization algorithm

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v13i6.pp6302-6311

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).