Power quality disturbance mitigation in grid connected photovoltaic distributed generation with plug-in hybrid electric vehicle
Abstract
In the last twenty years, electric vehicles have gained significant popularity in domestic transportation. The introduction of fast charging technology forecasts increased the use of plug-in hybrid electric vehicle and electric vehicles (PHEVs). Reduced total harmonic distortion (THD) is essential for a distributed power generation system during the electric vehicle (EV) power penetration. This paper develops a combined controller for synchronizing photovoltaic (PV) to the grid and bidirectional power transfer between EVs and the grid. With grid synchronization of PV power generation, this paper uses two control loops. One controls EV battery charging and the other mitigates power quality disturbances. On the grid connected converter, a multicarrier space vector pulse width modulation approach (12-switch, three-phase inverter) is used to mitigate power quality disturbances. A Simulink model for the PV-EV-grid setup has been developed, for evaluating voltage and current THD percentages under linear and non-linear and PHEV load conditions and finding that the THD values are well within the IEEE 519 standards.
Keywords
direct quadrature control; multicarrier space vector pulse width modulation; photovoltaic generator; plug-in electric vehicle; total harmonic distortion
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v13i6.pp6025-6036
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).