A deep learning-based mobile app system for visual identification of tomato plant disease

Aurelius Ryo Wang, Nabila Husna Shabrina

Abstract


Tomato is one of many horticulture crops in Indonesia which plays a vital role in supplying public food needs. However, tomato is a very susceptible plant to pests and diseases caused by bacteria and fungus. The infected diseases should be isolated as soon as it was detected. Therefore, developing a reliable and fast system is essential for controlling tomato pests and diseases. The deep learning-based application can help to speed up the identification of tomato disease as it can perform direct identification from the image. In this research, EfficientNetB0 was implemented to perform multi-class tomato plant disease classification. The model was then deployed to an android-based application using machine learning (ML) kit library. The proposed system obtained satisfactory results, reaching an average accuracy of 91.4%.

Keywords


Android application; convolutional neural network; deep learning; EfficientNetB0; tomato plant disease

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v13i6.pp6992-7004

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).