Improvement of voltage stability and loadability of power system employing the placement of unified power flow controller using artificial neural network

Mohammad Khalid Saifullah, Md. Monirul Kabir, Kazi Rafiqul Islam

Abstract


This paper proposes a voltage stability and loadability improvement model of power systems by incorporating the optimal placement of flexible alternating current transmission systems (FACTS) using an artificial neural network (ANN) called OPFANN. The key aspect of this model is to identify the weakest lines which having the most probability of voltage collapse utilized for placing FACTS devices. As installing a new power system network with rapidly increasing power demand cannot be possible, the operator usually operates the power system close to the stability limit. In this regard, continuous monitoring and improvement of system voltage stability and loadability of the existing system are vital issues for energy management systems nowadays. However, the proposed OPFANN introduces a more straightforward and faster scheme for voltage stability monitoring systems using ANN. Intelligent and reliable data samples have been designed to train the ANN based on two line voltage stability indices (LVSI) techniques. Compared with other works, OPFANN effectively improves voltage stability and loadability at the load point by installing the unified power flow controller (UPFC) FACTS devices to the weakest lines. OPFANN can provide information on voltage collapse points using ANN and reduce the further computational cost of LVSI. Finally, OPFANN ensures faster and more secure operation of the power system.

Keywords


artificial neural network; line voltage stability indices; loadability; optimal placement; unified power flow controller;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v13i5.pp4868-4877

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).