An optimal design of current conveyors using a hybrid-based metaheuristic algorithm
Abstract
This paper focuses on the optimal sizing of a positive second-generation current conveyor (CCII+), employing a hybrid algorithm named DE-ACO, which is derived from the combination of differential evolution (DE) and ant colony optimization (ACO) algorithms. The basic idea of this hybridization is to apply the DE algorithm for the ACO algorithm’s initialization stage. Benchmark test functions were used to evaluate the proposed algorithm’s performance regarding the quality of the optimal solution, robustness, and computation time. Furthermore, the DE-ACO has been applied to optimize the CCII+ performances. SPICE simulation is utilized to validate the achieved results, and a comparison with the standard DE and ACO algorithms is reported. The results highlight that DE-ACO outperforms both ACO and DE.
Keywords
Ant colony optimization; Current conveyors; Differential evolution; Hybrid metaheuristic; Optimization
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v12i6.pp6653-6663
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).