An optimal design of current conveyors using a hybrid-based metaheuristic algorithm

Soufiane Abi, Bachir Benhala


This paper focuses on the optimal sizing of a positive second-generation current conveyor (CCII+), employing a hybrid algorithm named DE-ACO, which is derived from the combination of differential evolution (DE) and ant colony optimization (ACO) algorithms. The basic idea of this hybridization is to apply the DE algorithm for the ACO algorithm’s initialization stage. Benchmark test functions were used to evaluate the proposed algorithm’s performance regarding the quality of the optimal solution, robustness, and computation time. Furthermore, the DE-ACO has been applied to optimize the CCII+ performances. SPICE simulation is utilized to validate the achieved results, and a comparison with the standard DE and ACO algorithms is reported. The results highlight that DE-ACO outperforms both ACO and DE.


Ant colony optimization; Current conveyors; Differential evolution; Hybrid metaheuristic; Optimization

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578