Location-aware deep learning-based framework for optimizing cloud consumer quality of service-based service composition
Abstract
The expanding propensity of organization users to utilize cloud services urges to deliver services in a service pool with a variety of functional and non-functional attributes from online service providers. brokers of cloud services must intense rivalry competing with one another to provide quality of service (QoS) enhancements. Such rivalry prompts a troublesome and muddled providing composite services on the cloud using a simple service selection and composition approach. Therefore, cloud composition is considered a non-deterministic polynomial (NP-hard) and economically motivated problem. Hence, developing a reliable economic model for composition is of tremendous interest and to have importance for the cloud consumer. This paper provides “A location-aware deep learning framework for improving the QoS-based service composition for cloud consumers”. The proposed framework is firstly reducing the dimensions of data. Secondly, it applies a combination of the deep learning long short-term memory network and particle swarm optimization algorithm additionally to considering the location parameter to correctly forecast the QoS provisioned values. Finally, it composes the ideal services need to reduce the customer cost function. The suggested framework's performance has been demonstrated using a real dataset, proving that it superior the current models in terms of prediction and composition accuracy.
Keywords
cloud service composition dimensional reduction; deep learning; location-aware; quality of service;
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v13i1.pp638-650
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).