Person identification based on facial biometrics in different lighting conditions

Marem H. Abdulabas, Noor D. Al-Shakarchy

Abstract


Technological development is an inherent feature of this time, that reliance on electronic applications in all daily transactions (business management, banking, financial transfers, health, and other important aspects of life). Identifying and confirming identity is one of the complex challenges. Therefore, relying on biological properties gives reliable results. People can be identified in pictures, films, or real-time using facial recognition technology. A face individual is a unique identifying biological characteristic to authenticate them and prevents permits another person to assume that individual’s identity without their knowledge or consent. This article proposes the identification model by facial individual characteristics, based on the deep neural network (DNN). The proposed method extracts the spatial information available in an image, analysis this information to extract the salient features, and makes the identifying decision based on these features. This model presents successful and promising results, the accuracy achieves by the proposed system reaches 99.5% (+/- 0.16%) and the values of the loss function reach 0.0308 over the Pins Face Recognition dataset to identify 105 subjects.

Keywords


age gap; convolution neural networks; facial recognition; Haar cascade; MobileNet;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v13i2.pp2086-2092

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).