A review on detecting brain tumors using deep learning and magnetic resonance images

Nawras Q. Al-Ani, Omran Al-Shamma

Abstract


Early detection and treatment in the medical field offer a critical opportunity to survive people. However, the brain has a significant role in human life as it handles most human body activities. Accurate diagnosis of brain tumors dramatically helps speed up the patient's recovery and the cost of treatment. Magnetic resonance imaging (MRI) is a commonly used technique due to the massive progress of artificial intelligence in medicine, machine learning, and recently, deep learning has shown significant results in detecting brain tumors. This review paper is a comprehensive article suitable as a starting point for researchers to demonstrate essential aspects of using deep learning in diagnosing brain tumors. More specifically, it has been restricted to only detecting brain tumors (binary classification as normal or tumor) using MRI datasets in 2020 and 2021. In addition, the paper presents the frequently used datasets, convolutional neural network architectures (standard and designed), and transfer learning techniques. The crucial limitations of applying the deep learning approach, including a lack of datasets, overfitting, and vanishing gradient problems, are also discussed. Finally, alternative solutions for these limitations are obtained.

Keywords


brain tumor datasets; convolutional neural network models; deep learning; detecting brain tumors; transfer learning;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v13i4.pp4582-4593

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).