Direct torque control and dynamic performance of induction motor using fractional order fuzzy logic controller

Geeta Kamalapur, Mruttanjaya S. Aspalli


Conventional direct torque control (DTC) is one of the best control systems for regulating the torque of an induction motor (IM). However, the DTC’s enormous waves in flux and torque cause acoustic noise that degrades control performance, especially at low speeds due to the DTC’s low switching frequency. Direct torque control systems, which focus just on torque and flux, have been proposed as a solution to these problems. In order to improve DTC control performance, this work introduces a fractional-order fuzzy logic controller method. The objective is to analyze this technique critically with regard to its efficacy in reducing ripple, its tracking speed, its switching loss, its algorithm complexity, and its sensitivity to its parameters. Simulation in MATLAB/Simulink verifies the anticipated control approach’s performance.


direct torque control; fractional order fuzzy logic controller; fuzzy logic controller; induction motor; MATLAB/Simulink;

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).