Efficiency of recurrent neural networks for seasonal trended time series modelling
Abstract
Seasonal time series with trends are the most common data sets used in forecasting. This work focuses on the automatic processing of a non-pre-processed time series by studying the efficiency of recurrent neural networks (RNN), in particular both long short-term memory (LSTM), and bidirectional long short-term memory (Bi-LSTM) extensions, for modelling seasonal time series with trend. For this purpose, we are interested in the learning stability of the established systems using the mean average percentage error (MAPE) as a measure. Both simulated and real data were examined, and we have found a positive correlation between the signal period and the system input vector length for stable and relatively efficient learning. We also examined the white noise impact on the learning performance.
Keywords
Automatic learning; long short-term memory; machine learning; recurrent neural network; time series
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v13i6.pp6586-6594
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).