Source-load-variable voltage regulated cascaded DC/DC converter for a DC microgrid system
Abstract
Solar energy is available abundantly, the utilization of solar energy is developing rapidly and the photovoltaic based direct current (DC) microgrid system design is under demand but the stability of the DC voltage is of most important issue, as the variation of the output DC voltage is a common problem when the load or source voltage varies, hence a regulated DC output voltage converter is proposed. This paper presents source-load-variable (SLV) voltage regulated cascaded DC/DC converter which is used to obtain regulated output voltage of 203.1 V DC at 0.4 duty ratio with ±2% voltage fluctuations for the variation in the input source voltage and ±1.5% voltage fluctuations for the variation in load resistance of the nominal value with lower output voltage ripple and without use of sub circuits. A simulation model of SLV voltage regulated cascaded DC/DC converter in LTspice XVII software environment for the assessment of converter performance at different input source voltages and load resistances are verified.
Keywords
DC microgrid; DC/DC converter; Photovoltaic system; Voltage lift technique; Voltage regulation
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v13i1.pp107-115
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).