Network selection based on chi-square distance and reputation for internet of things
Abstract
The internet of things (IoT) has become one of the most important technologies of the 21st century. The IoT environment is composed of heterogeneous IoT communication networks. These technologies are complementary and need to be integrated to meet the requirements of different types of IoT applications that require the mobility of the IoT device under different IoT communication networks. In this paper, the vertical handover decision method is considered to select the appropriate network among different IoT technologies. So, IoT devices, equipped with several radio technologies, can select the most suitable network based on several criteria like quality of service (QoS), cost, power, and security. In this work, a multi-attribute decision-making algorithm (MADM) based on techniques for order preference by similarity to an ideal solution (TOPSIS) that uses chi-square distance instead of Euclidean distance is proposed. The network reputation is added to reduce the average number of handoffs. The proposed algorithm was implemented to select the best technology depending on the requirements of the different IoT traffic classes. The obtained results showed that our proposition outperforms the traditional MADM algorithms.
Keywords
Low power wide area networks; Mobile internet of things; Multi-attribute decision making; Networks selection; Raking abnormality; Vertical handover
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v13i1.pp823-832
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).