Liver segmentation using marker controlled watershed transform
Abstract
The largest organ in the body is the liver and primarily helps in metabolism and detoxification. Liver segmentation is a crucial step in liver cancer detection in computer vision-based biomedical image analysis. Liver segmentation is a critical task and results in under-segmentation and over-segmentation due to the complex structure of abdominal computed tomography (CT) images, noise, and textural variations over the image. This paper presents liver segmentation in abdominal CT images using marker-based watershed transforms. In the pre-processing stage, a modified double stage gaussian filter (MDSGF) is used to enhance the contrast, and preserve the edge and texture information of liver CT images. Further, marker controlled watershed transform is utilized for the segmentation of liver images from the abdominal CT images. Liver segmentation using suggested MDSGF and marker-based watershed transform help to diminish the under-segmentation and over-segmentation of the liver object. The performance of the proposed system is evaluated on the LiTS dataset based on Dice score (DS), relative volume difference (RVD), volumetric overlapping error (VOE), and Jaccard index (JI). The proposed method gives (Dice score of 0.959, RVD of 0.09, VOE of 0.089, and JI of 0.921).
Keywords
computer tomography; gaussian filtering; image enhancement; liver segmentation; watershed transform;
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v13i2.pp1541-1549
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).