Extraction of photovoltaic generator parameters through combination of an analytical and iterative approach
Abstract
In the present work, we propose an improved method based on a combination of an analytical and iterative approach to extract the photovoltaic (PV) module parameters using the measured current-voltage characteristics and the simple diode model. First, we calculate the series resistance using a set of analytical formulas for the base values of the three current-voltage curves. Then, the three other parameters are analytically expressed as functions of serial resistance and ideality factor based on the linear least-squares method. Finally, the ideality factor is calculated applying an iterative algorithm to minimize the normalized root mean square error (NRMSE) value. The proposed method was validated with a real experimental set of two PV generators, which showed the best fit to the I-V curve. Moreover, the proposed method needs only the initial value of the ideality factor.
Keywords
current-voltage curve; least square method; one diode equivalent circuit ; photovoltaic generator;
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v12i5.pp4529-4537
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).