A doctor recommender system based on collaborative and content filtering

Qusai Y. Shambour, Mahran M. Al-Zyoud, Abdelrahman H. Hussein, Qasem M. Kharma


The volume of healthcare information available on the internet has exploded in recent years. Nowadays, many online healthcare platforms provide patients with detailed information about doctors. However, one of the most important challenges of such platforms is the lack of personalized services for supporting patients in selecting the best-suited doctors. In particular, it becomes extremely time-consuming and difficult for patients to search through all the available doctors. Recommender systems provide a solution to this problem by helping patients gain access to accommodating personalized services, specifically, finding doctors who match their preferences and needs. This paper proposes a hybrid content-based multi-criteria collaborative filtering approach for helping patients find the best-suited doctors who meet their preferences accurately. The proposed approach exploits multi-criteria decision making, doctor reputation score, and content information of doctors in order to increase the quality of recommendations and reduce the influence of data sparsity. The experimental results based on a real-world healthcare multi-criteria (MC) rating dataset show that the proposed approach works effectively with regard to predictive accuracy and coverage under extreme levels of sparsity.


Collaborative filtering; Content filtering; Doctor recommendation; Multi-criteria; Patient; Recommender systems

Full Text:


DOI: http://doi.org/10.11591/ijece.v13i1.pp884-893

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).