Tunicate swarm algorithm based maximum power point tracking for photovoltaic system under non-uniform irradiation
Abstract
A new maximum power point tracking (MPPT) technique based on the bio-inspired metaheuristic algorithm for photovoltaic system (PV system) is proposed, namely tunicate swarm algorithm-based MPPT (TSA-MPPT). The proposed algorithm is implemented on the PV system with five PV modules arranged in series and integrated with DC-DC buck converter. Then, the PV system is tested in a simulation using PowerSim (PSIM) software. TSA-MPPT is tested under varying irradiation conditions both uniform irradiation and non-uniform irradiation. Furthermore, to evaluate the performance, TSA-MPPT is compared with perturb & observe-based MPPT (P&O-MPPT) and particle swarm optimization-based MPPT (PSO-MPPT). The TSA-MPPT has an accuracy of 99% and has a reasonably practical capability compared to the MPPT technique, which already existed before.
Keywords
DC-DC buck converter; maximum power point tracking; non-uniform irradiation; photovoltaic system; tunicate swarm algorithm;
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v12i5.pp4559-4570
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).